College of Pharmacy \& Pharmaceutical Sciences Graduate Catalog 2015-2016

Degrees Offered

Doctor of Philosophy in Experimental Therapeutics
Doctor of Philosophy in Medicinal Chemistry
Master of Science in Medicinal Chemistry
Master of Science in Pharmaceutical Sciences

- Health Outcomes and Socioeconomic Sciences
- Industrial Pharmacy
- Pharmacology/Toxicology

Pharm.D./Doctor of Philosophy in Medicinal Chemistry Dual Degree
Bachelor of Science in Pharmaceutical Sciences (Medicinal and Biological Chemistry) and
Master of Science in Medicinal Chemistry (BSPS/MS) combined 5 year option

Master of Science in Pharmaceutical Sciences

The Master of Science in pharmaceutical sciences degree is designed to prepare an individual for responsibilities in professional practice, the pharmaceutical industry and scientific research beyond those possible with a baccalaureate.
Although a single degree is conferred, specialization is possible in that the curriculum is organized into three distinct disciplines, referred to here as "options". Applicants must select the program of study (option) they wish to pursue. The options available to graduate students are pharmacology/toxicology, health outcomes and socioeconomic sciences, and industrial pharmacy.

The requirements for the Master of Science in pharmaceutical sciences degree differ according to the option. The minimum course work for the industrial pharmacy major is 30 semester hours, for the pharmacology/toxicology major 36 semester hours and for the health outcomes and socioeconomic sciences major 32 semester hours. In addition, each major requires a minimum of 6 semester hours of thesis research.

Admission Requirements

In general, a baccalaureate in the sciences is required for admission, although applicants possessing other bachelor's degrees will be considered if the latter represent adequate preparation. Certain options and graduate courses require undergraduate preparation as prerequisites, and this preparation should be completed as soon as possible upon admission. The total time required for completion of the graduate program leading to the Master of Science in pharmaceutical sciences degree will depend upon the preparation of the student entering the program. Normally two years of study and research are required.

The admission requirements of the College of Graduate Studies of the University apply. The basic requirement is a 2.7 (on a 4.0 scale) GPA on all undergraduate work leading to the bachelor's degree. Applicants having less than a 2.7 GPA on all undergraduate work will be considered for admission if other criteria for estimation of potential success in graduate studies are positive.

Each student must submit three copies of transcripts, one of which must be official and show all post-secondary academic work and degrees granted, three letters of recommendation from college faculty members acquainted with the applicant's character and ability, and scores from the aptitude portion of the GRE.

International students are required to take the TOEFL, which will be given in their own country by the Educational Testing Service.

Normally, acceptance will be decided by April 1 for admission during the following fall semester. The priority deadline for completed applications is January 15th. Complete applications received by this deadline will be considered for admission. Applications received after the January 15th deadline may also be considered, if positions are available in a program. International students are encouraged to submit applications one month prior to the stated deadline to allow for delays in international correspondence.

Curriculum and Options - M.S. Program in Pharmaceutical Science

Pharmacology/Toxicology option: A minimum of 36 semester hours of courses plus a minimum of 6 thesis credit hours are required for the degree.
Undergraduate courses required (or their equivalents):
Course Course Name Credit Hours
CHEM3710 Physical Chemistry for the Biosciences I 3
CHEM3720 Physical Chemistry for the Biosciences II 3
MATH1750 Calculus for the Life Sciences I 4
MATH1760 Calculus for the Life Sciences II 3
MBC3310 Medicinal Chemistry I: Drug Action and Design 3
MBC3320 Medicinal Chemistry II: Drug Targeting to Receptors 3
MBC4300 Medicinal Chemistry III: Chemotherapy and Immunotherapy 3
PHCL2600 Functional Anatomy and Pathophysiology I 4
PHCL2620 Functional Anatomy and Pathophysiology II 4

Graduate courses required:

Course	Course Name	Credit Hours
PHCL5140	Interpretation of Pharmaceutical Data	2
PHCL5700	Pharmacology I-Principles of Pharmacology, Autonomic	
	Pharmacology and Non-Steroidal Anti-inflammatory Agents and Related Pharmacology	3
PHCL5720	Pharmacology II: Endocrine and CNS Pharmacology	3
PHCL5730	Toxicology I	3
PHCL5760	Toxicokinetics	3
PHCL6600	Seminar in Pharmacology	$1-2$
PHCL6700	Pharmacology III: CNS and Cardiovascular/Renal Pharmacology	3
PHCL6720	Pharmacology IV: Chemotherapeutics	3
PHCL6900*	M.S. Thesis Research in Pharmacology	$1-6$
PHCL6920*	M.S. Thesis Research in Pharmacology	$1-6$

*6 credit hours are the required minimum; more than $\mathbf{6}$ credit hours can be taken.

Elective course work may be selected from the following***:

Course	Course Name	Credit Hours	
PHCL5630	Cancer Chemotherapy (highly recommended)	3	
PHCL5750	Toxicology II		3
PHCL5990**	Problems in Pharmacology (highly recommended)	$6-18$	

**May replace PHCL5700, 5720, 5730, 6700, 6720, and 5760 if these were taken at UT at the undergraduate level as PHCL3700, 3730, 4730, 4810, 4820 and 4760 , respectively, and a grade of B- or above was received for the course.

MBC6100	Advanced Immunology	$2015-2016$
MBC6550	Biochemistry	2
MBC5620	Biochemical techniques	4
MBC6800	Methods in Biotechnology	2
	Mata	

***Other electives may be recommended by the department graduate committee.

Health Outcomes and Socioeconomic Sciences option: A minimum of 32 semester hours of course work plus a minimum of 6 thesis hours are needed for the degree. For students enrolled in the clinical track a minimum of 24 semester hours of course work plus a minimum of 6 thesis hours are needed for the degree. Candidates that would be eligible for the Clinical Track include: 1). University of Toledo students or graduates with eligibility based on satisfactory completion of PHPR 3260 (Pharmacy HealthCare Administration 1) and PHPR 4520 (Pharmacy HealthCare Administration 2) and 2) PharmD. graduates from other programs with eligibility reviewed on a case by case basis with respect to competencies in Pharmacy HealthCare Administration.
Core Courses:

Course	Course Name	Credit Hours
MKTG5410	Marketing Systems	3
PHPR 5260	Pharmacy \& Healthcare Administration I	2
PHPR5520	Pharmaceutical Marketing and Management	3
PHPR5590	Readings in Health Care Access and Cultural Competence	2
PHPR5610	Pharmacoeconomics and Outcomes Research I	2
PHPR6600	Seminar in Health Outcomes and Socioeconomic Sciences	1
PHPR6520	Analysis of the Pharmaceutical Environment	2
PHPR6530	Research Methods in Pharmacy Practice	2
PHPR6960	Thesis Research in Pharmacy	$1-6^{*}$
RESM5110	Statistics and Quantitative Methods I	3
RESM6120	Statistics and Quantitative Methods II	3

*A minimum of 6 credit hours of Thesis Research in Pharmacy is required.

Track Courses:

This major has 5 tracks. Students enrolled in this option must select a track focus after the first semester. Track courses must be approved by the student's major advisor. Students may pick from the courses listed below or an equivalent/alternative course as deemed appropriate by their major advisor. Minimum of 9 credit hours of track courses required.

Program Tracks, with approved track courses are as follows:

1. Business Administration- Track Courses

- BUAD6100 Accounting for Strategic Decisions 3
- BUAD6200 Financial Systems 3
- BUAD6300 Strategic Marketing \& Analysis 3
- BUAD6400 Results-Based Management 3
- BUAD6500 International business 3
- BUAD6600 Supply Chain Management 3
- BUAD6800 Information Technology \& E-Business 3
- BUAD6900 Strategic management Capstone 3

2. Outcomes Research-Track Courses

- PUBH6600 Health Behavior 3
- PUBH6460 Health Promotion Programs 3
- PUBH6010 Public Health Epidemiology 3
- PUBH6030 Advanced Epidemiology

3

- PUBH6110 Categorical Data Analysis

3. Pharmacoeconomics-Track Courses

- PHPR5620 Pharmacoeconomics and Outcomes II 3
- ECON5750 Health Economics 3
- ECON5810 Econometrics Models and Methods I 3
- ECON5820 Econometrics Models and Methods II 3
- ECON5830 Econometrics Models and Methods III 3

4. Social Behavior Sciences- Track Courses

- PUBH6600 Health Behavior 3
- PUBH6460 Health Promotion Programs 3
- RESM6220 Measurement I 3
- RESM6230 Measurement II 3

5. Clinical Science - Track Courses

- HEAL6600 Health Behavior 3
- PUBH6460 Health Promotion Programs UNIV 3
- PUBH 6060 Advanced Biostatistics 3

Other Track Courses or electives may be approved by the department graduate committee
All students admitted to this option, must comply with the policies and procedures stated in the 'graduate student handbook,' provided to students during orientation. Additional requirements, for successful completion of this degree option, are stated in the graduate handbook.

Industrial Pharmacy option: A minimum of 27 credit hours of course work and a minimum of 6 credit hours of thesis work for a total of 33 required minimum credit hours for the degree.

Undergraduate courses required:

Courses will be evaluated for students with a B.S. in pharmacy, Pharm.D. or B.S.P.S. degree.

Course	Course Name	Credit
MBC3550	Physiological Chemistry I: Structure and Function of Biological Macromolecules	

MBC3560 Physiological Chemistry II: Chemical Regulation of Cells and Organisms

PHPR3070 Pharmaceutics and Pharmaceutical Technology I and
PHPR3080 Pharmaceutics and Pharmaceutical Technology II

	or	$8-9$
CHEM3710	Physical Chemistry for the Biosciences I and	
CHEM3720	Physical Chemistry for the Biosciences II and	
CHEM3730	Physical Chemistry I	
Graduate required courses:	Credit Hours	
Course	Course Name	2
PHPR5680	Parenteral Manufacturing	1
PHPR5681	Parental Manufacturing Lab	3
PHPR5690	Dosage Form Design	2
PHPR5700	Equilibrium Phenomenon	3
PHPR5720	Pharmaceutical Rate Processes	2
PHCL5760	Toxicokinetics	3
PHPR 5770	Advanced Drug Delivery Systems -1	3
PUBH6000	Biostatistics	3
CHEM6310	Separation Methods	1
CHEM6350	Separation Methods Lab	2
PHPR6850	Product Development	$1 *$
PHPR6950	Seminar	6
PHPR 6960	MS Thesis Research in Pharmacy	
* seminar course must be taken 2 times therefore 2 credit hours total to meet requirements		

* seminar course must be taken 2 times therefore 2 credit hours total to meet requirements

Electives (Not required, optional):

Course Course Name Credit Hours
MBC5620 Biochemical Techniques 2
PHPR5710 Selected Topics in Pharmaceutical Technology 2-3
PHPR5990 Problems in Pharmacy Practice 1-6
PHPR6530 Research Methods in Pharmacy Practice 3
CHEM6810 Materials Science I 4
CHEM6820 Materials Science II 4
CHEM6980 Special Topics in Chemistry 1-4

Applicants for the health outcomes and socioeconomic sciences and industrial pharmacy options who possess a B.S. in pharmacy, Pharm.D. or bachelor of science in pharmaceutical sciences degree from an ACPE-accredited institution will be given preference for admission into those options. International applicants must have earned pharmacy degrees from their home institutions.

Master of Science in Medicinal Chemistry

Admission Requirements

Satisfactory completion of a bachelor's degree in chemistry, biology, pharmacy or a related discipline is required. It is assumed the undergraduate training will include differential and
integral calculus, college physics, a one-year course in general and inorganic chemistry including a laboratory, a one-year course in organic chemistry including a laboratory, and training in analytical chemistry. An undergraduate course in physical chemistry is recommended.

The admission requirements of the College of Graduate Studies of the University apply.

Degree Requirements

Master's students need to complete the following courses as partial fulfillment of their requirement for an M.S. degree:

Course	Course Name	Credit Hours
MBC5100	Research Practices in Medicinal Chemistry	1
MBC5620	Biochemical Techniques	2
MBC5900	Medicinal Chemistry Seminar (4 hours required)	1
MBC6190	Advanced Medicinal Chemistry	4
MBC6200	Biomedicinal Chemistry	4
MBC6550	Biochemistry	4
MBC6960	M.S. Thesis Research in	$1-15$
	Medicinal Chemistry (6 hours required)	
Other 5000- to $6000-l e v e l ~ c o u r s e s ~ a s ~ a d v i s e d ~$		
In addition, the following items also must be completed:		

1. Minimum of 30 semester hours of graduate credit, of which no more than six hours are counted from the category of M.S. thesis or Ph. D. dissertation research (MBC6960/8960)
2. Preparation of a written M.S. thesis based upon the results of an original research investigation performed by the student during the M.S. program at The University of Toledo.
3. Successful oral defense of the thesis before the thesis advisory committee (consisting of the thesis adviser and two other members) and presentation of the results of the thesis research in a seminar before the Department of Medicinal and Biological Chemistry.
4. Acceptance of this thesis by the M.S. thesis adviser and the thesis advisory committee.
5. Maintenance of a cumulative graduate GPA of 3.0 or higher.
6. Two semesters of experience as a teaching assistant. The program believes experience in teaching is critical to solidifying the student's understanding of the basics of the field and improving communication skills.

Medicinal and Biological Chemistry (MBC) Major \& Master of Science (M.S.) in Medicinal Chemistry (MC) Option

Admission Requirements

Students need to meet the requirements for entry into the Bachelor of Science of Pharmaceutical Science (BSPS) program. At the beginning of the second semester of their P1 year (spring semester, third year of study) the student applies for provisional acceptance into the graduate program and identifies an MBC faculty mentor for an house internship to be taken during the summer between the P1 and P2 year. Once the BSPS degree is awarded the student will be fully accepted into the graduate program. The internship mentor will become the graduate advisor of the student.

Program Requirements

The pre-professional division (year 1 and 2) requirements are the same as for the BSPS program as are the requirements for entry into the professional division. When students enter the professional division of the College of Pharmacy and Pharmaceutical Sciences they are in their P1 year (3rd year of study). The requirements for the P1 and P2 years are listed below:

Medicinal and Biological Chemistry Professional Division Curriculum

P1 Year

First Semester
MBC 3310 Medicinal Chemistry I 2
$\begin{array}{lll}\text { MBC } & 3330 & \text { Techniques in Pharmaceutical and } \\ & & \text { Medicinal Chemistry }\end{array}$
$\begin{array}{llll}\text { MBC } & 3340 & \begin{array}{l}\text { Techniques in Pharmaceutical and } \\ \\ \\ \text { Medicinal Chemistry Laboratory }\end{array} & \end{array}$
PHCL 3700 Pharmacology I......................... 3
MBC 3550.Physiological Chemistry I 3
MBC Laboratory (Recommend MBC 3880) ${ }^{1}$... 3
Major Elective ${ }^{2}$.. 2
Second Semester*
MBC 3100 Practices in Pharmaceutical Research1
MBC 3320 Medicinal Chemistry II............. 2
MBC 3560 Physiological Chemistry II 3
PHCL 3730 BSPS Pharmacology II 3
MBC Laboratory (Recommend MBC 3880) ${ }^{1}$... 3
Major Elective (Recommend MBC 3100) ${ }^{2}$....... 1
Major Elective (Recommend MBC 4870) ${ }^{2}$...... $1-4$

Third semester (Summer)

MBC 4780 Internship in Med. \& Biol. Chem ${ }^{4}$
6-12

P2 Year

First Semester

MBC 4710 Targeted Drug Design ${ }^{3}$....................... 3
Major Elective (Recommend MBC 4850) ${ }^{2}$................. $1-10$
MBC Laboratory (Recommend MBC 4880) ${ }^{1}$ or Major Elective 3
Graduation December giving 3.5 years for the B.S.P.S. MBC degree completion +
${ }^{1}$ The MBC major requires that 3 semester hours of laboratory instruction be taken at the 3000 level or higher in a course taught by the MBC Department. Completion of 3 semester hours of any of the following courses will satisfy this requirement: MBC 3880, MBC 4850, MBC 4870, MBC 4880, MBC 4900, MBC 4950, or MBC 4960. MBC 3850 Microbiology \& Immunology Lab, 1 semester hour credit does not satisfy this requirement unless it is taken with an additional 2 credit hours of any of the other approved laboratories listed above.
${ }^{2}$ To be chosen from the MBC electives list. (see College of Pharmacy and Pharmaceutical

Sciences Catalogue)

${ }^{3}$ MBC 4720, Advances in Drug Design, when offered, will also fulfill the requirement.

* In the beginning of the second semester the student identifies a MBC faculty mentor for an in house internship and applies for provisional acceptance to the graduate school
${ }^{4}$ Internship must be taken in the summer before the P2 year with an in house MBC faculty mentor who will then be the mentor for the M.S. degree.
+ Once the B.S.P.S. degree is awarded the student can move from provisional to accepted in the graduate program. Requirements to be fulfilled for the MS MC degree are given directly above

The student would begin the master's portion in the spring semester following the B.S.P.S. MBC graduation at the end of the Fall term, and could complete the M.S. degree by the end of the spring semester of the following year. Therefore the two degrees, B.S.P.S. MBC and M.S. MC, could be accomplished in 5 calendar years.

Doctor of Philosophy in Medicinal Chemistry

Admission Requirements

Satisfactory completion of a bachelor's degree in chemistry, biology, pharmacy or a related discipline is required. It is assumed that the undergraduate training will include differential and integral calculus, college physics, a one-year course in general and inorganic chemistry including a laboratory, a one-year course in organic chemistry including a laboratory, and training in analytical chemistry. An undergraduate course in physical chemistry is recommended.

The ability to excel in graduate studies and research must be evident based on grades from undergraduate studies, recommendations from college faculty, results from standardized aptitude and achievement examinations (Graduate Record Examination), and performance in research and independent study.

Students with M.S. degrees in medicinal chemistry or related fields may be admitted directly to the Ph.D. program. Students without M.S. degrees may be admitted directly to the Ph.D. program, but must take 30 credits at the master's level prior to accruing doctoral level credits.

Ph.D. students need to complete the following courses as partial fulfillment of their requirement for a Ph.D. degree. Additional graduate courses (5000 to 8000 level) may be required, as advised during the development of each student's plan of study.
Course
MBC5100/7100
MBC5620/7620
MBC 5900/7900
MBC6190/8190

Course Name

Research Practices in Medicinal Chemistry
Biochemical Techniques
Medicinal Chemistry Seminar (6 hours required)
Advanced Medicinal Chemistry

Credit Hours
1
2
1
4

MBC6200/8200	Biomedicinal Chemistry	4
MBC6300/8300	Biomedicinal Chemistry Laboratory I	4
MBC6310/8310	Biomedicinal Chemistry Laboratory II	4
MBC6550/8550	Biochemistry	
MBC8960	Ph.D. Dissertation Research in Medicinal \quad Chemistry (30 hours required)	4
		$30-60$

Select 8 hours in chemistry, biology, or medicinal and biological chemistry:

Chemistry Courses

Course	Course Name	Credit Hours
CHEM6330	Spectroscopic Methods	$2-4$
CHEM6400/8400	Advanced Organic Chemistry	$2-4$
CHEM6410/8410	Organic Synthesis	$2-4$
CHEM6420	Physical Organic Chemistry	$2-4$
CHEM6510/8510	Protein Chemistry	$2-4$
CHEM6520/8520	Enzymology	$2-4$
CHEM6530/8530	Nucleic Acid Chemistry	$2-4$
Biology Courses		

Course	Course Name	Credit Hours
BIOL6010/8010	Advanced Molecular Biology	4
BIOL6020/8020	Advanced Molecular Biology Laboratory	3
BIOL6090/8090	Advanced Cell Biology	4
BIOL6100/8100	Research Methodology: Cell and Molecular Biology	3
Medicinal and Biological Chemistry Courses		
Course	Course Name	Credit Hours
MBC5380/7380	Medicinal and Poisonous Plants	3
MBC6100/8100	Advanced Immunology	2
MBC6800/8800	Methods in Biotechnology	3

Other 5000/7000 or 6000/8000 level courses as advised

In addition, all students must satisfy the following:

1. Minimum of 60 semester hours of graduate credit beyond the master's level (see master of science in medicinal chemistry), including a minimum of 15 hours of courses, laboratories and seminars (exclusive of dissertation research) and a minimum of 30 hours of $\mathrm{Ph} . \mathrm{D}$. dissertation research.
2. Satisfactory overall performance on a written qualifying examination covering graduatelevel medicinal chemistry, biochemistry and either organic chemistry or advanced cell/molecular biology.
3. Selection of a doctoral research adviser, preparation of an acceptable written Ph.D. dissertation proposal in consultation with the adviser, and the satisfactory oral defense of the proposal before the dissertation advisory committee. The written qualifying examination and the defense of the dissertation proposal will constitute the examination requirements necessary for advancement to candidacy for the Ph.D. in medicinal chemistry. The chair of the doctoral dissertation advisory committee will be the student's doctoral
research adviser. The dissertation advisory committee will consist of two additional Medicinal and Biological Chemistry Department faculty plus one member from outside the student's department or college.
4. Subsequent to admission to candidacy for the Ph.D. degree, the student is expected to spend a minimum of two semesters in full-time study at The University of Toledo.
5. Preparation of a Ph.D. dissertation based on the results of an original research investigation performed by the student during his/her Ph.D. program at The University of Toledo.
6. Presentation of the results of the dissertation research in a public seminar before the Department of Medicinal and Biological Chemistry and successful oral defense of the dissertation before the dissertation advisory committee.
7. Acceptance of the dissertation by the Ph.D. dissertation adviser and the dissertation advisory committee.
8. Maintenance of a cumulative graduate GPA of 3.0 or higher.
9. Three semesters of experience as a teaching assistant. The program believes experience in teaching is critical to solidifying the student's understanding of the basics of the field and improving communication skills.

Doctor of Philosophy in Experimental Therapeutics

Program Overview

Experimental therapeutics is the integration of basic and applied sciences focused on the study and development of new treatments for human disease. Research in experimental therapeutics seeks to understand human diseases from the molecular level to the whole organism in order to develop rational approaches for new pharmacological treatments. In addition, experimental therapeutics includes the development of new therapies through systematic investigation at increasing levels of complexity ranging from individual molecules and proteins, to cellular and tissue based assays and to the whole organism. The purpose of the program is to train students at the doctoral level who can translate discoveries in the laboratory to therapies in a clinical setting.

Admission Requirements

Satisfactory completion of a bachelor's degree in chemistry, biology, pharmaceutical sciences, pharmacy or a related discipline is required.

The ability to excel in graduate studies and research must be evident based on grades from undergraduate studies, recommendations from college faculty, results from standardized aptitude and achievement examinations (Graduate Record Examination), and performance in research and independent study.

Students with M.S. degrees in pharmacology or related fields (e.g., pharmaceutical sciences) may be also admitted to the program. However, they are expected to have a minimum of 30 credits at the Master's level prior to accruing doctoral level credits.

Required Courses

Ph.D. students need to complete the following required courses at the 5000 to 8000 level as
partial fulfillment of the requirements for a Ph.D. degree. The course level is determined by the number of graduate credits completed at the time of registering for that particular course.

Course	Course Name	Credit Hours
PHCL5700	Pharmacology I	3^{a}
PHCL5100/7100	Principles of Experimental Therapeutics I	3
PHCL5200/7200	Principles of Experimental Therapeutics II	3
PHCL5770/7770	Current Topics in Toxicology I	1^{b}
PHCL6650/8650	Seminar in Experimental Therapeutics	2
	(Minimum 6 hours required)	1^{c}
PHCL5460/7460	Current Topics in Pharmacokinetics/Toxicokinetics	1^{d}
PHCL5440/7440	Current Topics in Interpretation of Pharmaceutical Data	$2-6^{\mathrm{e}}$
PHCL6300/8300	Research Experience in Experimental Therapeutics	Ph.D. Dissertation Research in Experimental Therapeutics
PHCL8960	$1-15^{\mathrm{f}}$	
MBC6190/8190	Advanced Medicinal Chemistry	4
OR	From Experimental to Applied Therapeutics	4
PHCL5500/7500	Fr Being a Scientist	1

${ }^{\text {a }}$ Not required if this same course, or PHCL3700 or equivalent was taken previously. If taken by Masters' students admitted to the program with eligibility to take 7/8 level courses, the PHCL 5700 credit will not count toward those required for the Ph.D. degree.
${ }^{\text {b }}$ Requires PHCL4730 or PHCL5730 as pre-requisite or PHCL5730 as co-requisite. If PHCL5730 taken by Masters' students admitted to the program with eligibility to take $7 / 8$ level courses, the credit for this course will not count toward those required for the Ph.D. degree.
${ }^{\text {'Requires PHCL4760 or PHCL5760 as pre-requisite or PHCL5760 as co-requisite. If PHCL }}$ 5760 taken by Masters' students admitted to the program with eligibility to take $7 / 8$ level courses, the credit for this course will not count toward those required for the Ph.D. degree.
${ }^{\text {d }}$ Requires PHCL5140 as pre- or co-requisite. If taken by Masters' students admitted to the program with eligibility to take 7/8 level courses, the credit for this course will not count toward those required for the Ph.D. degree.
${ }^{\mathrm{e}}$ To fulfill the required laboratory rotations, a minimum of 4 hours must be taken in two different sections of the course (2 hours in each).
${ }^{\mathrm{f}} \mathrm{A}$ minimum of 30 hours is required

General Elective Courses:

In addition to the required courses, general elective courses may be selected from the following. The course level to be taken is dependent on the number of graduate credits earned at the time of registration for that particular course:

Course Course Name Credit Hours
PHCL5750
Toxicology II
3

PHCL5630	Cancer Chemotherapy	3
PHCL5990	Problems in Pharmacology	$1-6$
PHCL6390/8390	Problems in Experimental Therapeutics	$1-6$
MBC5620/7620	Biochemical Techniques	2
MBC5380/7380	Medicinal and Poisonous Plants	3
MBC6100/8100	Advanced Immunology	2
MBC6800/8800	Methods in Biotechnology	3
MBC6550/8550	Biochemistry	4CHEM6510/8510
Protein Chemistry	$2-4$	
CHEM6520/8520	Enzymology	$2-4$
CHEM6530/8530	Nucleic Acid Chemistry	$2-4$
BIOL6010/8010	Advanced Molecular Biology	4
BIOL6090/8090	Advanced Cell Biology	4
BIOL6100/8100	Research Methodology: Cell Mol. Biol.	3

Specialized Elective Courses

Specialized elective courses are recommended for students with concentrations in different areas of the program, and may be selected from the following list:

Additional Requirements

In addition, all students must satisfy the following:

1. Minimum of 90 semester hours of graduate credit, including a minimum of 30 semesters hours at the Masters level, and a Minimum of 60 semester hours of graduate credit beyond the master's level. The required minimum 60 credits beyond the Masters level should include a minimum of 30 hours of Ph .D. dissertation research.
2. Students admitted with a minimum of 30 semester hours at a Masters level should sign up for 7/8 level classes, if their Masters degree was conferred by a USA university. Students admitted with a Bachelor's degree or a foreign graduate degree should sign up for $5 / 6$ level classes for the first 30 credit, and for 7/8 level classes thereafter.
3. With the approval of the department graduate committee, certain courses taken in a foreign university may be considered as equivalent to some of the program courses or for full-filling pre-requisite requirements
4. A grade of B- or higher is expected to be maintained for the required courses. A grade of Bor higher is also required for all of the pre-requisite courses.
5. A cumulative graduate GPA of 3.0 or higher must be maintained.
6. Satisfactory overall performance is expected on a written qualifying examination, which is administered after completion of the required graduate courses for that exam. The qualifying examination covers the following graduate courses, including their pre- and/or co-requisites:

PHCL5100/7100 Principles of Experimental Therapeutics I 3
PHCL5200/7200 Principles of Experimental Therapeutics II 3
PHCL5770/7770 Current Topics in Toxicology I 1
PHCL5440/7440 Current Topics in Interpretation of Pharmaceutical Data 1
7. Selection of a doctoral research adviser, preparation of an acceptable written Ph.D. dissertation proposal in consultation with the adviser, and the satisfactory oral defense of the proposal before the dissertation advisory committee. The written qualifying examination and the defense of the dissertation proposal will constitute the examination requirements necessary for advancement to candidacy for the Ph.D. in Experimental Therapeutics. The chair of the doctoral dissertation advisory committee will be the student's doctoral research adviser. The dissertation advisory committee will consist of at least two additional faculty members plus one member from outside the student's department or college.
8. Subsequent to admission to candidacy for the Ph.D. degree, the student is expected to spend a minimum of two semesters in full-time study at The University of Toledo.
9. Preparation of a Ph.D. dissertation based on the results of an original research investigation performed by the student during his/her Ph.D. program at The University of Toledo.
10. Successful oral defense of the dissertation before the dissertation advisory committee and presentation of the results of the dissertation research in a seminar before the department of pharmacology.
11. Acceptance of the dissertation by the Ph.D. dissertation adviser and the dissertation advisory committee.

Doctor of Pharmacy Degree Programs

The Doctor of Pharmacy degree for applicants having, among other qualifications, a B.S. in Pharmacy, is unavailable at this time.

Combined Pharm.D. - Ph.D. in Medicinal Chemistry Program

Admission Requirements

Students who are admitted to both programs separately may pursue both degrees concomitantly.

Program Requirements

Although the requirements for both programs will be met, there is some overlap and flexibility,
allowing a student to complete graduate-level requirements for both degrees in four to four and a half years. In general terms, students will follow the sequence for the Pharm.D. curriculum during the first four semesters, taking one graduate-level medicinal chemistry course each semester. In the fifth semester, students will take the required Pharm.D. clerkships, plus the twohour seminar, with at least one clerkship rotation involving a research experience. The advisor can approve 6000-level Pharm.D. courses as Ph.D. electives. The Ph.D. requirement for MBC6550 (Biochemistry) may be waived. Beginning with sixth semester (summer following the second year), students will complete the requirements for the Ph.D. in medicinal chemistry.

